A generalization of a graph result of D. W. Hall

نویسنده

  • Sandra R. Kingan
چکیده

D.W. Hall proved that every simple 3-connected graph with a Ks-minor must have a K3.3-minor, the only exception being Ks itself. In this paper, we prove that every 3-connected binary matroid with an M(Ks)-minor must have an M(K3.3)or M*(K3,3)-minor, the only exceptions being M(K5), a highly symmetric 12-element matroid which we call T12, and any single-element contraction of T~2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solis Graphs and Uniquely Metric Basis Graphs

A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

$G$-asymptotic contractions in metric spaces with a graph and fixed point results

In this paper, we discuss the existence and uniqueness of fixed points for $G$-asymptotic contractions in metric spaces endowed with a graph. The result given here is a new version of Kirk's fixed point theorem for asymptotic contractions in metric spaces endowed with a graph. The given result here is a generalization of fixed point theorem for asymptotic contraction from metric s paces to metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 173  شماره 

صفحات  -

تاریخ انتشار 1997